I. CATALOG DESCRIPTION:

COURSE NUMBER: MATH 1600

COURSE TITLE: Analytic Geometry and Calculus I

PREREQUISITES: Algebra & Trig or PreCalculus or appropriate placement score.

CATALOG DESCRIPTION:

This course is a study of analytical geometry and single variable calculus. Topics include limits, continuity, derivatives, applications of derivatives, integrals, and applications of integrals.

CREDIT HOURS: 5.0 semester credit hours/ 7.5 quarter credit hours/75 contact hours

II. COURSE OBJECTIVES

The course will:

- 1. Present analytical, numerical and graphical techniques to establish limits.
- 2. Introduce analytical, numerical and graphical techniques to verify continuity
- 3. Use the definition of derivative
- 4. Provide the rules of differentiation to calculate derivatives
- 5. Relate the concepts of differentiation to analyze increasing and decreasing functions and determine concavity.
- 6. Use the concepts of differentiation to calculate rates of change.
- 7. Present model functions and use techniques of differentiation to optimize the function.
- 8. Use the definition of integrals and approximation.
- 9. Provide the rules of integration to calculate integrals.
- 10. Relate the concepts of integration to calculate area between curves.
- 11. Use the concepts of integration to calculate volumes of solids.

III. Student Learning Outcomes:

Limits and Continuity

Outcomes: The student will:

- Evaluate rates of change
- Formulate tangents to curves
- Calculate limits of a function using the limit laws
- Evaluate one-sided limits and limits at infinity
- Evaluate infinite limits and vertical asymptotes
- Verify continuity of functions

Derivatives

Outcomes: The student will:

- Find tangents and derivatives at a point
- Express the derivative as a function
- Utilize differentiation rules for polynomials, products, and quotients
- Interpret the derivative as a rate of change
- Find the derivatives of trigonometric functions
- Utilize the chain rule
- Use implicit differentiation
- Utilize the mean value theorem

Applications of Derivatives

Outcomes: The student will:

- Evaluate extreme values of functions
- Solve related rates problems
- Utilize linearization and differentials
- Use the first derivative test
- Determine concavity and curve sketching
- Solve applied optimization problems
- Utilize Newton's Method

<u>Integrals</u>

Outcomes: The student will:

- Estimate with finite sums
- Use sigma notation and limits of finite sums
- Evaluate definite integrals
- Utilize the fundamental theorem of calculus
- Evaluate indefinite integrals
- Use the substitution rule
- Find the area under a curve and between curves

Applications of Definite Integrals

Outcomes: The student will:

- Determine volumes by slicing and rotation about an axis
- Evaluate volumes by cylindrical shells

IV. CONTENT/TOPICAL OUTLINE:

- A. Limits and Continuity
 - 1. Rates of change
 - 2. Limits of functions
 - 3. Continuity

B. Derivatives

- 1. Derivative at a point
- 2. Derivative as a function
- 3. Differentiation Rules
- 4. Derivative as Rate of Change
- 5. Derivatives of Trigonometric Functions
- 6. Chain Rule
- 7. Implicit Differentiation
- 8. Derivatives of Inverse Functions and Logarithms
- 9. Inverse Trigonometric Functions
- 10. Related Rates
- 11. Linearization and Differentials

C. Applications of Derivatives

- 1. Extreme values of functions
- 2. Mean value theorem
- 3. First Derivative Test
- 4. Concavity
- 5. L'Hopital's Rule
- 6. Applied Optimization
- 7. Newton's Method
- 8. Antiderivatives

D. Integrals

- 1. Finite sums
- 2. Definite integral
- 3. Fundamental Theorem of Calculus
- 4. Indefinite Integrals
- 5. Area between curves

E. Applications of Definite Integrals

- 1. Volumes using cross-sections
- 2. Volumes using cylindrical shells

V. INSTRUCTIONAL MATERIALS:

APPROVED TEXTBOOKS and/or MATERIALS:

- 1. Calculus Early Transcendentals; 12th ed., Thomas, Pearson/Addison Wesley,
- 2. Calculus: Early Transcendental Functions; 3rd Edition, Smith, McGraw-Hill,
- 3. <u>Calculus;</u> 9th Edition, Larson, Houghton Mifflin
- 4. <u>University Calculus, 2nd</u>, Hass, Person/Addison Wesley
- 5. <u>Calculus</u>, 7th ed, Stewart-Thomson, Brooks/Cole
- 6. <u>Single and Multivariable Calculus</u>, 5th Hughes-Hallett,

Equipment: Graphing calculator recommended

VI. METHODS OF PRESENTATION

- A. Methods of presentation are determined by the instructor. They traditionally include some combination of the following:
 - 1. Lecture
 - 2. Class Discussion
 - 3. Presentation and discussion of solutions to problems and exercises

VII. METHODS OF EVALUATION

- A. Methods of evaluation are determined by the instructor. Evaluation traditionally include some combination of the following:
 - 1. Unit Tests
 - 2. Comprehensive final exam
 - 3. Quizzes
 - 4. Assignments
- B. Students will receive a course outline/syllabus indicating the instructor's specific attendance policy, course timeline, course requirements, and grading criteria.

VIII. INSTITUTIONAL DEFINED SECTION

(To be used at the discretion of each community college as deemed necessary)

^{*}Americans with Disabilities Act (ADA) statement: Individual college adopted statement will be used.